Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 30, 2026
-
Illusion-knit fabrics reveal distinct patterns or images depending on the viewing angle. Artists have manually achieved this effect by exploiting microgeometry, i.e., small differences in stitch heights. However, past work in computational 3D knitting does not model or exploit designs based on stitch height variation. This paper establishes a foundation for exploring illusion knitting in the context of computational design and fabrication. We observe that the design space is highly constrained, elucidate these constraints, and derive strategies for developing effective, machine-knittable illusion patterns. We partially automate these strategies in a new interactive design tool that reduces difficult patterning tasks to familiar image editing tasks. Illusion patterns also uncover new fabrication challenges regarding mixed colorwork and texture; we describe new algorithms for mitigating fabrication failures and ensuring high-quality knit results.more » « less
-
Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design , instead considering families of design variations , sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts (BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size of the e-graph manageable and direct the search towards promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain.more » « less
-
Rewrite rules are critical in equality saturation, an increasingly popular technique in optimizing compilers, synthesizers, and verifiers. Unfortunately, developing high-quality rulesets is difficult and error-prone. Recent work on automatically inferring rewrite rules does not scale to large terms or grammars, and existing rule inference tools are monolithic and opaque. Equality saturation users therefore struggle to guide inference and incrementally construct rulesets. As a result, most users still manually develop and maintain rulesets. This paper proposes Enumo, a new domain-specific language for programmable theory exploration. Enumo provides a small set of core operators that enable users to strategically guide rule inference and incrementally build rulesets. Short Enumo programs easily replicate results from state-of-the-art tools, but Enumo programs can also scale to infer deeper rules from larger grammars than prior approaches. Its composable operators even facilitate developing new strategies for ruleset inference. We introduce a new fast-forwarding strategy that does not require evaluating terms in the target language, and can thus support domains that were out of scope for prior work. We evaluate Enumo and fast-forwarding across a variety of domains. Compared to state-of-the-art techniques, enumo can synthesize better rulesets over a diverse set of domains, in some cases matching the effects of manually-developed rulesets in systems driven by equality saturation.more » « less
-
Library learningcompresses a given corpus of programs by extracting common structure from the corpus into reusable library functions. Prior work on library learning suffers from two limitations that prevent it from scaling to larger, more complex inputs. First, it explores too many candidate library functions that are not useful for compression. Second, it is not robust to syntactic variation in the input. We proposelibrary learning modulo theory(LLMT), a new library learning algorithm that additionally takes as input an equational theory for a given problem domain. LLMT uses e-graphs and equality saturation to compactly represent the space of programs equivalent modulo the theory, and uses a novele-graph anti-unificationtechnique to find common patterns in the corpus more directly and efficiently. We implemented LLMT in a tool named babble. Our evaluation shows that babble achieves better compression orders of magnitude faster than the state of the art. We also provide a qualitative evaluation showing that babble learns reusable functions on inputs previously out of reach for library learning.more » « less
An official website of the United States government

Full Text Available